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Let f E cn+ I[ -1, 1] and let H[f](x) be the nth degree weighted least squares
polynomial approximation to f with respect to the orthonormal polynomials {qk }

associated with a'distribution da on [-1,1]. It is shown that if Ilqn+lil/llqnll;?;
max(qn+ 1(1 )/qn(I), -qn+ I( -1 )/qn( -1 )), then Ilf- H[f] II:;:;; Ilf(n+ 1)11 . Ilqn+ iii /
Ilq~n//)II, where 11·11 denotes the supremum norm. Furthermore, it is shown that in
the case of Jacobi polynomials with distribution (l-t)'(I+t)Pdt, a,p> -1, the
condition on Ilqn+lil/llqnll is satisfied when either max(a, p);?; -1/2 or -1 <a=
p< -1/2. © 1988 Academic Press, Inc.

1. INTRODUCTION

Let {qk} be the orthonormal polynomials associated with the dis­
tribution dr:t. on the interval [-1,1]. Let fEC n+1

[ -1,1]. The weighted
least squares approximation to f is given by

H[f](x) = f qk(X) r f(t) qk(t) dr:t.(t).
k=O -1

(1.1 )

Brass [1] has shown that if the distribution dr:t. has the symmetry
property that for all continuous functions g

r g(t)dr:t.(t)={ g(-t)dr:t.(t)
-1 -I

and if Ilqkll=qk(I), k=O,I, ...,n+l, then a bound for the error,
f(x)-H[f](x), in this approximation is given by

IIf- H[f]ll:5: Ilqn+111 Ilf(n+ 1)11
-.-:: Ilq~n+\l)11 '

where 11·11 denotes the supremum norm on [ -1, 1].
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(1.2)
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With regard to the distribution (1- t)" (1 + t)p dt, ex, j3 > -1, and the
associated normalised Jacobi polynomials, the conditions required by Brass
are satisfied only if ex = j3 ~ -1/2.

Previously Paget [2] has given bounds of the form (1.2) in the Jacobi
polynomial case for ex, j3 such that either max (ex, (3) ~ -1/2 or
- 1 < rx = f3 < - 1/2.

It is the purpose of this present paper to show that the method of Brass
[1] may be extended to include all those cases considered in Paget [2].

2. THE THEOREM OF BRASS EXTENDED

With the s-norm for functionals Q on CS[ -1, 1] defined by

IIQlls = sup IIQ[f] II
1If") II ,;;; 1

and for XE [-1,1] the functional R x defined on C n + l
[ -1, 1J by

R,[f] = f(x) - H[f](x),

Brass [1] has shown that

(2.1 )

(2.2)

(j
IIRx\ln+ I ~ (n + 1) (jn + I max(\liJn+ 1 Cn+ iJnCn+ din' I!qn+ 1 Cn- qnCn+ Illn)'

(2.3 )

where (jk> 0 is the coefficient of xk in qk(X), ih = Ilqkll, and the functional
Ck is defined on en[- 1, 1] by

Now

Ck[g] = r g(t) qk(t) dex(t).
-1

(2.4)

so that we need to consider polynomials of the form qn+l(t)-cqn(t) where
c is a constant.

THEOREM 2.1 (Szego [3, p.46]). Let c be an arbitrary real constant,
then the polynomial
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has n + 1 distinct real zeros. If c > 0 (c < 0) these zeros lie in (-1,1) with
the exception of the greatest (least) zero which lies in [ -1, 1] if and only if

Using this result the theorem of Brass may be extended in the following
way.

THEOREM 2.2. If qn' qn+ I are such that

iin + diin;?; max(qn + 1(1 )/qn(l),

then for fEC n+l [ -1,1]

Ilf -H[f]11 ~ Ilf(n+I)llllqn+III/llq~n++/)II.

Proof Consider the polynomial

P;;+ I(t) = iin + Iqn(t) - iinqn+ l(t)·

(2.6)

(2.7)

(2.8)

By Theorem 2.1 P;;+ I has n + 1 distinct zeros, n of which lie in ( - 1, 1). If
iin+ I/iin = qn + 1(1 )jqn(l) then 1 is a zero of P;;+ I· If iin+ diin > qn+ 1(1 )/qn(l)
then the greatest zero of P;;+ I is greater than 1. Thus we may write

n+1
P;;+I(t) = -iin[)n+1 IT (t-Ilk),

k=1

where

A similar argument using Theorem 2.1 with c < 0 yields

(2.9)

(2.10)

n

P;;+I(t) = iin+ Iqn(t) + iinqn +I(t) = iin[)n +I IT (t - (k), (2.11)
k~O

where

(O~ -1«1«2< ... «n<1. (2.12)

Again, following Brass, let L n -I [g] denote the (n - 1)th degree inter­
polation polynomial coinciding with g at '71> '72' ..., '7n- Then

(iin+ICn - iinCn+d [g ] = r g( t) P;;+I(t) drx( t)
-I

= f
l

(g(t)-Ln_l[g](t»p;;+I(t)drx(t)

I
I g(n)(~(t») n _

= ,IT (t-'7d·Pn+l(t)drx(t),
-I n. k~1
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where ~(t)E(-I,I). From (2.9) and (2.10) we see that
nZ=1 (t-IJd·p;;+!(t) does not change sign on [-1,1]. On applying the
mean value theorem and using the orthogonality of {qk} we deduce that

_ _ g(n)(o iin+!
(Qn+l Cn-qn Cn+d[gJ =--,- --,'

n. Un

for some ~ E ( -1, 1). Thus

(2.13 )

Similarly, by constructing the interpolation polynomial to coincide with
g at (I' (2' ... , (n (see (2.11), (2.12)) it may be shown that

II ijn+ ! Cn+ ijnCn+ 111 n= q~ : 1.
n'U n

(2.14 )

Then from (2.3), (2.13), and (2.14) we have that

IIRxlln+1~ (n +ql
n
)7 ~n +1= Ilqn +111 / Ilq~"-r+/ III·

The result (2.7) then follows directly from Definitions (2.1) and (2.2). I
We note that in this theorem the distribution symmetry condition of

Brass' theorem is not required and also that the maximum value of Iqk(X}1
in [-1, 1] may be attained at an interior point provided that (2.6) is
satisfied.

3. ApPLICATION TO JACOBI POLYNOMIALS

We show that Condition (2.6) of Theorem 2.2 is satisfied by the nor­
malised Jacobi polynomials provided that either max( 0:, fJ)?; -1/2 or
-1 < 0: = fJ < -1/2. This result shows that Theorem 2.2 is a significant
extension of the theorem of Brass [IJ which, for the Jacobi polynomials,
only covers the case 0: = fJ?; -1/2.

The distribution being considered is (1 - tY (1 + t)/l dt with a, fJ> -1,
and the associated orthonormal polynmials are

where

640/54/3-6

hk =r (Pj;·/l)(t))2 (1- tt (1 + t)/l dt.
-1

(3.1 )

(3.2)
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(3.4 )

k even. (3.5)

For all IX, 13 > -1 we have that

q,,+ 1(1) = (~)1/2 P~"-!{(I) = (~)1/2 n + 1+ IX
qn(1) I1n+1 P~"-,P)(I) I1n+1 n+l

and

Therefore

max (qn+ 1(1), _ qn+ I( -1 )) = (~)1/2 n + 1 + max (IX, 13). (3.3)
qn(l) qn(-I) I1n+1 n+l

Case 1. max(lX, 13) ~ -1/2. From Szego [3, p. 168] we have that

iln+ I = (~)1/2 n + 1+ max(lX, 13).
iln I1n+1 n+l

Thus from (3.3) and (3.4) we see Condition (2.6) is satisfied.

Case 2. - 1 < IX = 13 < -1/2. This case is more complicated because we
have no precise expression for ilk when k is odd.

For k even we have the expression (see [3, p. 171])

- _ -1/2 ("-,"-)(0)1- 11k"1/2T(k+ IX + 1)
qk- l1k IPk - 2k(k/2)! T((k/2)+IX+ 1)'

For k odd we note that PL"-'''-) is an odd function and PL"-'''-)(O) = O. We use
a particular case of Sonin's theorem ([3, p. 166]) and an adaptation of it.

Let g be defined by

1- x
2 ( d )2g(x) = (P<"-'''-)(X))2 + - P("-'''-)(x) .

k k(k + 21X + 1) dx k

Using the differential equation for PL"-'''-) we have

, _ 2(21X + 1) ( d ("-."-) )2
g(x)-k(k+21X+I)X dxPk (x) .

(3.6)

(3.7)

Since 21X + 1 < 0 we see that g is non-decreasing in (-1,0) and non­
increasing in (0, 1). It follows that IPL"-'''-)(x)1 achieves its maximum value at
±x:, the two stationary points of PL"-'''-) closest to zero. Since g(xt) <g(O),
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(3.9)

Then using (3.6) and (3.7) we have that

h'(x) = -2(2a + 1) x(1 - x 2)2a (p~~.a)(x)f. (3.10)

We see that h is non-increasing in (-1,0) and non-decreasing in (0, 1).
Thus h(xt) > h(O) and

IPka.a)(xt)1 > (k(k + 2a + 1)) -1/2 (1 - xt 2 ) - (n 1/2) IP~a,a)' (0)1. (3.11)

From (3.8) and (3.11) we have, for k odd,

IP~M)'(O)I

IPka'~)(xt)1 =Dk (k(k+2a+ 1))1/2

(k+2a+ 1)1/2 F(k+a+ 1)
= Dk k l / 22k ((k -1 )/2)! F((k/2) + a + (3/2))' (3.12)

where

From (3.5) and (3.12) it follows that

! (~)1/2 n+a+ 1 ( n+ 1 )1/2D
n

+ 1
ij n + 1 =lhn + 1 n + 1 n + 2a + 2

ijn hn 1/2 n + a + 1 n 1/2 1

(hn+J n+ 1 C+2a+ 1) Dn

if n is even,

if n is odd,

(3.13 )

(3.14)

with bounds for D n , D n + I given by (3.13).
Recalling that 2a + 1 < 0, we see from (3.3), (3.13), and (3.14) that for n

odd

ij n_+ I > (~) 1/2 n + a + 1 = max (qn+ 1(1 ), _ qn+ 1( - 1)),
qn hn+ 1 n+1 qn(1) qn(-1) /

so that the Condition (2.6) is satisfied.
For n even we need to look closer at D n + l' Since

!!:...- p(a,a)(X) = ~ (n + 2a + 2) p(a + 1, a + l){ X)
dx n+l 2 n \
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provided n ~ 4.

the n stationary points of P~~+~l are precisely the n zeros of p~~+l,~+l). Thus
we may take X:+1 to be the smallest positive zero of p~~+l,~+l). From
[3, p. 139J we have

* (n + a + (1/2)) n. n n
x <cos =sm < .

n+1 2(n+a+(3/2)) 2n+2a+32n+2a+3

Thus
2

*2 n
1 - x n+ 1 > 1 - (2n + 2a + 3)2'

Now, for 0 < a, b < 1 it may be shown that

b ab
(l-a) >1-1_a'

Therefore, since 0 < -(2a + 1) < 1,

D2 >(1-X*2 )-(2~+1)n+1 n+1

(
n2) - (2~ + 1)

> 1----:----.."
(2n + 2a + 3)2

1
(2a + 1) n2

> +-:-:---'--::--:-c-;;---;;
(2n + 2a + 3? - n2

n +2a+2
>----

n+1

The proviso for this last inequality is algebraically obtained as

n> max ((1/S)(n2-12 - Sa) + (nIS)(n2+ S -16a)1/2) > 3.019.
-1 <~< -1/2

For n = 2 the maximum value of P~~'~) can be evaluated
(P~~'~)((2a+ 5)-1/2) = (1/6)(a + 2)(a + 3)(2a + 5)-1/2) so that from (3.12)

2 8(a+2) 2a+4
D3 = 3(2a + 5) >-3-'

the inequality being valid for -1 < a < -1/2.
Thus for all even integers n we have

(
n + 2a + 2)1/2

D n + 1 > 1 'n+

so that from (3.14) and (3.3) it follows that Condition (2.6) is satisfied.
This completes case 2.
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